University of Dayton
Am Kent Ud Promo

Teaching Machining, One Turn of the Crank at a Time

July 2, 2020
A university-level course is imparting the hands-on skills of manual milling to help future designers, engineers — and machinists — learn the techniques that will give them a better feel for the work they'll do.

Why do designers and mechanical engineers need experience operating a manual mill, or for that matter any machine tool? A similar question might be asked about CNC machinists: Who cares about all that handle cranking and lever turning when practically all machining set-ups now are performed with computer numerical and servomotor control?

The simple answer to both questions is: Learning manual milling techniques because makes designers, engineers, and machinists better at their jobs.

For designers and engineers, a solid grasp of basic machining practices provides a better understanding of Design for Manufacturing principles, which promotes lower-cost production and more machinable products.

As for machinists, the "personal" experience of milling, turning, and grinding is invaluable to their understanding of the process. Once they "feel" how a knee mill reacts as they plow a cutter through a chunk of steel, or watch the part deflect as they turn a long journal on an engine lathe, they realize the effect of their decisions and action. Without this first-hand experience, they are less likely to fully comprehend the performance of CNC versions of these same machine tools.

Back to basics —Sean Falkowski, associate professor for the University of Dayton's Department of Engineering Management, Systems, and Technology, knows this is all "preaching to the choir." He and other instructors there have taught the fundamentals of machining to thousands of engineering students, many of whom have gone on to machining careers at Makino, General Electric, Honda Motors, and other well-known manufacturers in Ohio and elsewhere.

The manual knee mills, engine lathes, and surface grinders they are using to teach those skills were developed and supplied by Kent USA, Tustin, Calif.

“I'm a professor in engineering technology, and one of the things we still require of our students is that they attend a manual machining class,” he said. “The purpose is twofold. The first, obviously, is to teach them machining, for all the reasons just described. They learn basic shop safety, how to read drawings and determine proper cutting parameters, and then perform all of the machining steps needed to produce the components for an assembled product—in this case, a basic two-jaw clamp.

"When they’re done, they have to measure it," Falkowski continued, "which is something else we teach here. We also have senior-level students, who work with industry partners on prototypes and other advanced products as part of their Capstone Project. And while our students are doing all this, they’re adding valuable knowledge to their engineering skill toolbox.”

The upgrade project — Fortunately for the students, they have some excellent equipment on which to do their projects. Over the 2018 summer shutdown, Falkowski oversaw the installation of eight SSM-1340BV manual precision lathes and four KGS-618 surface grinders. And six months later, during the holiday break, he completed his machine shop modernization project with eight KTM-3VKF knee mills.

All of the Kent machines have rigid, cast-iron structures, with hardened and ground ways and slides, super-precision spindle bearings, powerful drive motors, and various features that make them easy to run as well as productive.

The improvements were a long time coming. Three years ago, having recognized that the school’s existing equipment mix was hopelessly outdated, Falkowski worked with director of engineering laboratories Eric Grimm to give the shop a total makeover. They evaluated the options, determined which brand of equipment would be best for the students’ needs, then turned to Dave Dearth, sales engineer at the local Kent USA dealership, Advanced Machinery Companies, for price and delivery.

“Sean did most of the heavy lifting on this project,” Grimm said. “All I did was help push through the purchase order approvals and coordinate with Advanced Machinery, who were the real heroes in all this. They brought everything in on time, unpacked it all, leveled the machines, and even ran the power. When our students came back after the break, they were able to hit the ground running. Those guys have been great to work with, as has Kent. Their equipment is top-notch and we’ve had no problems with it whatsoever.”

The deeper reason —Falkowski has another objective for promoting the skill of manual machining: an increasing number of young people have never touched any machinery at any time in their life.

“Back in the day,” he laughed, “most of us worked on our bikes, our lawnmowers, and eventually our cars. But many of our students step into the classroom for the first time and their only experience with manufacturing was watching a YouTube video — if they'd that!  The result is either that they're afraid of machinery or, worse, they have no fear of machinery at all. It's our job to give everyone healthy respect for the machine shop, and help them develop the skills they’ll need when they leave here.”

The University of Dayton offers four-year degrees, and as mentioned earlier, the students passing through Falkowski’s classroom go on to careers in aircraft design, industrial management, manufacturing automation, power generation, space technology, and other critical work. But not everyone takes the same path to get there. The University also partners with nearby Sinclair Community College, which allows students to earn a two-year Associate’s certificate in manufacturing technology and then complete a Bachelor’s degree at the University. 

“When not teaching people about machining, we also use the lab as a showcase, as a means to encourage high school students to attend our university,” he said. “We show them and their parents that we’re not offering a purely academic degree; that they’re going to get a chance to actually cut metal and learn real-world skills.

"To do that, however, we needed machinery that looks good and is dependable, and Kent definitely fits the bill in those details. So even though much of our program is based on manual equipment, visitors quickly recognize that it’s all very modern, still relevant to the industry, and that they will gain valuable knowledge here. All in all, we've been very successful at conveying our message.”

Kip Hanson is a technical writer. Contact him at [email protected]

Latest from Machining / Cutting